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Abstract 
A layered approach for identifying communities in the Web is presented and explored 
by applying the Flake Exact Community Identification Algorithm to the UK 
academic Web. Although community or topic identification is a common task in 
information retrieval, a new perspective is developed by: (a) the application of 
Alternative Document Models, shifting the focus from individual pages to aggregated 
collections based upon Web directories, domains and entire sites; (b) the removal of 
internal site links; and (c) the adaptation of a new fast algorithm to allow fully 
automated community identification using all possible single starting points. The 
overall topology of the graphs in the three least aggregated layers was first 
investigated and found to include a large number of isolated points but, surprisingly, 
with most of the remainder being in one huge connected component, exact 
proportions varying by layer. The community identification process then found that 
the number of communities far exceeded the number of topological components, 
indicating that community identification is a potentially useful technique, even with 
random starting points. Both the number and size of communities identified was 
dependant on the parameter of the algorithm, with very different results being 
obtained in each case. In conclusion, the UK academic Web is embedded with layers 
of non-trivial communities and, if it is not unique in this, then there is the promise of 
(a) improved results for information retrieval algorithms that can exploit this 
additional structure, and (b) the application of the technique directly to partially 
automate Web metrics tasks such as that of finding all pages related to a given subject 
hosted by a single country’s universities. 

Introduction 
The task of identifying connected communities of topic based pages on the 

Web is one that is important in information retrieval to improve the standard text 
matching vector space model (Salton & McGill, 1983) in order to give improved 
precision and recall in search engine searches (Kleinberg, 1999). But the individual 
Web page is not necessarily the correct or only useful unitary entity for the purpose of 
analysing the Web. For example, inter-site links have been singled out as more 
important that intra-site links (Kleinberg, 1999; Flake et al., 2000, 2002), showing the 
need for alternative perspectives. Moreover, search engines also implicitly recognize 
that the Web is not a collection of unrelated pages by returning results organized by 
site. From a Web metrics perspective, aggregating pages into clusters using 
alternative document models (ADMs) based upon directories, domains and multi-
domain sites has been previously found to be a fruitful technique (Thelwall, 2002a, 
2003; Thelwall & Harries, 2003; Thelwall & Wilkinson, 2003a). In the light of all 
these indicators, it is logical to explore the potential for clustering information on the 

                                                 
1 Thelwall, M. (2003). A layered approach for investigating the topological structure of communities in 
the Web. Journal of Documentation, 59(4), 410-429. 



   Page 2 of 16 

Web based upon different levels of aggregation than that of the page. This will be 
termed a layered approach. A successful outcome would be unlikely to result in the 
surpassing of the page as the basic unit of information for search engines; rather it 
would add an extra tool to the armoury of Web information retrieval (IR) 
practitioners. For example, a page could be clustered into new communities based 
upon its directory, domain and site and this information could be incorporated into 
existing classification structures in a probabilistic model in order to improve overall 
results (e.g. the approach of Gao et al., 2001 or Xi & Fox, 2001). Multiple 
overlapping approaches are typical of search engine algorithms (Arasu et al., 2001; 
Page, 2001). The first aim of this paper is not the construction of such an improved 
Web IR system but only to investigate the community structure of a section of the 
Web in a systematic way in order to ascertain whether this approach is viable in 
principle. 

As a second motivation, the topological structure of the Web is also of interest 
when link structures are modelled or visualised. This occurs in many disciplines 
including communication networks (Park et al., 2002; Garrido & Halavais, 2003), 
computer science (Broder et al., 2000; Pennock et al., 2002), geography (Brunn & 
Dodge, 2001), information science (Rousseau, 1997; Ingwersen, 1998; Smith, 1999; 
Thomas & Willett, 2000; Björneborn, 2001; Thelwall, 2002c), physics (Albert et al., 
1999; Jung et al., 2002) and sociology (Boudourides & Antypas, 2002; Rogers, 2002). 
The development of tools to identify community structures is vital for tasks such as 
these that involve exhaustively identifying pages that relate to a given topic or theme. 
The most immediate need for comprehensiveness probably comes from Web metrics 
studies of departments within a national university system (Chen et al., 1998; Thomas 
& Willett, 2000; Chu et al., 2002; Tang & Thelwall, 2002; Li et al., 2003) because the 
Web pages associated with a department are typically spread across several different 
domains. It can be a very labour intensive process to identify all relevant pages, and 
one that is almost certainly very error-prone. In the remainder of the paper this will be 
termed the Web metrics motivation, in contrast to the Web IR motivation discussed in 
the first paragraph. 

Literature Review 

The Topological Structure of the Web Graph 
The Web can be conceived as a mathematical graph where the pages are called 

nodes and are connected by the hyperlinks between pages, sometimes called arrows or 
directed edges in graph theory. This kind of graph is known as a directed graph. If the 
direction of the links is ignored, then they merely connect nodes and will be termed 
arcs. The resulting collection of nodes and arcs forms an undirected graph. A 
component in a graph is a collection of nodes such that it is possible to start at any one 
of them and eventually reach any other by following arrows or arcs. Directed graph 
components are typically smaller than those of similar undirected graphs because the 
direction of the arrows is not ignored. Studying the Web as a directed or undirected 
graph is a useful technique in order to be able to gain information about its overall 
link structure (Rousseau, 1997; Albert et al, 1999; Broder et al., 2000; Baeza-Yates & 
Castillo, 2001; Huberman, 2001; Jung et al., 2002; Pennock et al., 2002; Thelwall & 
Wilkinson, 2003b). This is described by Borgman and Furner (2002) as bibliometric 
analysis of the Web. It is of interest here because community identification algorithms 
act on the topological structure of the Web only, ignoring page contents. 
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The Web is incredibly well interconnected from a topological perspective: for 
example if two pages from an AltaVista crawl were chosen at random then it is 
probable that they would be connected via a chain of (forwards and backwards) links 
between Web pages (Broder et al., 2000). As a result of this, the undirected and 
undirected components in the AltaVista crawl were much too big to be useful for 
community identification purposes: the Web is simply too well interconnected. It 
seems likely that this is still true today and is generally true for the databases of large 
commercial search engines. An explanation given for this phenomenon is that it is 
likely that a cluster of highly interlinked pages on the Web will be connected to other 
clusters by isolated links, known as shortcuts or small world links (Watts & Strogatz, 
1998; Björneborn, 2001). This is the phenomenon that simultaneously allows 
networks to have clusters of highly interlinked nodes despite a relatively low number 
of links being required to traverse between most pairs of nodes. The highly 
interconnected nature of the Web is the reason for the need for special algorithms to 
detach coherent communities of pages from the rest of the Web. Similar problems 
predate the Web (Botafogo & Shneiderman, 1991). 

Communities and Topics in the Web 
The term topic will be used to refer to sets of pages on the Web that share a 

common theme. These are typically identified by a combination of text analysis and 
link structures, whereas communities are identified by link structures alone. 
Chakrabarti et al. (2002) have investigated topics on the Web and found that that they 
do interlink in a way that should make identification through link structures possible 
but despite this topics can drift quickly when following links randomly on the Web, a 
small world type of phenomenon. 

The concept of community is actually a complex one when put into practice. 
In the theory of communication networks, a clique in a graph is a connected collection 
of nodes such that each node has at least as many connections inside the clique as to 
other nodes outside (different definitions are sometimes used for this term). Even with 
this straightforward definition in a non-trivial connected graph each node will be in at 
least two cliques; itself on its own; and the entire graph. In fact one node could be in a 
number of valid cliques, as the diagram below illustrates.  
 
 

 
 

Fig 1. A simple connected graph with many non-trivial communities. 
 

The node 2 is in the following cliques: {2}, {1,2}, {1,2,3}, {2,3,4}, {2,3}, 
{1,2,3,4}. Clearly the task of identifying a non-trivial maximal set of disjoint cliques 
in a graph will typically have multiple solutions. Ultimately, identifying communities 
in a graph is not a well-defined problem and all algorithms will need to incorporate 
heuristics in their working definition of community.  

Community and Topic Identification Algorithms 
The use of links in Web IR became mainstream with Google (Brin & Page, 

1998), but its algorithm did not use clustering. Kleinberg’s (1999) HITS algorithm 
used a different approach by grouping pages into topics, using a combination of page 
text and link structures. Other techniques include that of Haveliwala et al. (2000), 
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which is an attempt to produce a scalable algorithm for topic based clustering 
although it is much less oriented on link topologies than HITS. Haveliwala (2002) has 
also produced a topic-based variant of PageRank without a clustering algorithm. Flake 
et al. (2000; 2002) see the reliance on semantics of HITS and similar algorithms as a 
weakness and developed the Community Identification Algorithm (CIA) to identify 
communities of Web pages through link structures alone. The major advance for this 
algorithm over previous similar approaches was that it was able to process a huge 
graph in a computationally tractable way. The communities produced are guaranteed 
to be connected if the seed sets were, and as a result of being produced by the 
algorithm are cliques. The set of communities identified by applications of the 
algorithm will be a subset of the communities in the Web, but there is no known 
concise description of this subset, other than the tautological: the set of sets which are 
produced by the algorithm. 

The computational viability of the CIA for large graphs is gained from a 
clever repurposing of the maximal flow algorithm (Ford & Fulkerson, 1956), which 
makes this type of topological community identification possible for the first time for 
huge graphs such as the Web. There are two CIA algorithms: exact CIA and 
approximate CIA. The exact algorithm calculates a community in one step whereas 
the approximate version proceeds iteratively, starting with a seed and gradually 
extending the network by finding pages that are linked to, or themselves link to the 
community and then using the exact version to select only those that connect most to 
the community. The approximate version is the one used in practice by its inventors 
because it they deal with the situation where the theoretical graph covered, the whole 
Web, is too huge to be stored in memory and in any case is not immediately 
accessible but must be generated on demand by downloading Web pages. 

The exact CIA is described in detail in (Flake et al., 2000, 2002) but its salient 
points and simple consequences of its organization will be described here. 
Essentially, with a directed graph G and a seed set S of nodes (i.e. Web pages), which 
would normally be the nodes of a connected subgraph of G, the task is to find a 
(possibly) larger, subgraph E’ with E ⊂ E’ ⊂ G such that E’ is in some sense well 
connected to the seed set relative to the rest of the graph. This is where the modified 
maximal flow algorithm is used. Firstly, all graph links are complemented by the 
addition of links in the opposite direction, if one is not already present. The links in 
the resulting graph are all assigned the same number k, called the flow capacity, 
where k is a variable parameter of the algorithm. Secondly, artificial source (S) and 
sink (T) nodes are added to the graph. Thirdly, links are added from the source to 
each community member in E and given an infinite capacity. Lastly, links are added 
from each node in the original G to the sink and given a capacity of 1. An example of 
this is shown in Fig. 2 for a simple network of two nodes connected by a single 
arrow, where the seed set is {A}. 
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Fig 2. A simple directed graph on the left and its weighted modified version on the 
right with seed set {A} for processing to find the maximal flow from S to T. 

 
The network can be thought of as a flow system for water, where the source of 

water is at S and its destination is T. The arrows represent pipes with the number 
indicating the maximum quantity of water that can flow through them and the head 
indicating the permissible direction of flow. The question can then be asked as to how 
much water can flow from S to T. Applying the maximal flow algorithm to the 
network can solve this problem. A by-product of the algorithm is something called a 
minimal cut. This is a line separating the network through which no flow is possible 
and ideally it will break away the highly connected portion E’ of G around E from the 
rest of G. The size of E’ is potentially dependant on the parameter k, with larger 
values giving bigger communities. 

When a value of k is chosen for the network in Fig. 2 and the maximal flow 
from S to T has been calculated then the nodes still reachable from S along arrows 
that are not saturated are in the community. If k = 1 then the maximal flow is two: 1 
flows along the path S-A-T and one flows along the path S-A-B-T. Now both arrows 
out of A are full and so no more flow is possible from S to T. The community is just 
A because A can be reached from S but there are no unsaturated arrows leading from 
A. If k = 2 then there is a different result. The maximal flow is still two with the same 
paths. But now the arrow from A to B is not saturated, it has a spare capacity of one. 
The blockages are now A-T and B-T. The nodes still connected to S at the end are A 
and B, giving a different community. This example illustrates how the choice of k 
affects the size of community. If k is greater than the number of arrows in the network 
then all nodes connected to any node in the initial community will find themselves in 
the community calculated by the CIA, but if k = 1 then the algorithm will return only 
the original community. 

The Alternative Document Models and the Layered Approach 
The ADMs are essentially methods for grouping together Web pages for the 

purpose of counting links. They were introduced in order to develop new metrics 
through reducing anomalies created by inappropriate implicit conceptualisations of 
documents on the Web (Thelwall, 2002a; Thelwall & Wilkinson, 2003a). All were 
then used to investigate the impact of source page type on Web linking in a scholarly 
context (Thelwall & Harries, 2002). The descriptions below are taken from Thelwall 
(2002a).  
• Individual Web page Each separate HTML file is treated as a document for the 

purposes of extracting links. Each unique link URL is treated as pointing to a 
separate document for the purposes of finding link targets. URLs are truncated 
before any internal target marker ‘#’ character found to avoid multiple references 
to different parts of the same page. 

• Directory All HTML files in the same directory are treated as a document. All 
target URLs are automatically shortened to the position of the last slash, and links 
from multiple pages in the same directory are combined and duplicates 
eliminated. 

• Domain name As above except all HTML files with the same domain name are 
treated as a single document for both link sources and link targets. In particular, 
this clusters together all pages hosted by a single subdomain of a university site.  

• University As above except that all pages belonging to a university are treated as a 
single document for both link sources and link targets. 
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In the context of identifying communities, the ADMs will not be treated as 
competing conceptualisations, as originally developed for metrics, but instead as 
layers of structure in the Web. Each layer has the potential to give different and 
complementary information about  how its contents relate to the rest of the Web. 

The Research Questions  
The issue to be addressed is whether there are significant community 

structures in the Web in any or all layers of the document model. In the light of the 
use of inter-site links only in community and topic identification algorithms 
(Kleinberg, 1999, Flake et al., 2002) attention will be restricted to the Web after the 
removal of all internal site links. Unfortunately, it is impractical to crawl the whole 
Web for a single research question and also infeasible to extract the topological 
structure of the Web from the freely available large crawl data sets at archive.org. 
Taking a random sample of the Web (e.g. Thelwall, 2002b) is also not a sensible 
approach since links between sites are likely to be relatively rare unless the group of 
sites forms a coherent collection in some way. As a result the focus will be upon 
national academic domains. This is a viable choice since several of these have been 
previously investigated and found to be highly interlinked (Smith & Thelwall, 2002; 
Thelwall, 2002a; Thelwall & Tang, 2002). It also directly addresses the Web metrics 
motivation for community identification. The limitations that this imposes will be 
discussed at the end. 

For a national academic Web stripped of links within individual university 
Web sites and each of the four document models, the specific questions to be 
investigated are the following. 
• Does a topological decomposition of the graph yield non-trivial results: i.e. a 

significant number of communities that have more than one node but do not tend 
to form one huge component? 

• Are there values of k in the single seed exact CIA that give non-trivial results: i.e. 
a significant number of communities that have more than one node but do not 
form a complete connected component? 

• When significant community formation is identified, are the communities 
produced predominantly robust in the sense of being frequently rediscovered for 
different seed values? 

Methodology 
The approach to be used is that of applying the algorithm to various ADM 

versions of a large crawl: that of the UK academic Web. The UK was chosen as (a) 
the largest academic Web that it was practical to crawl and process using the software 
and hardware available, and (b) a Web that had been previously crawled and 
extensively analysed which gives the considerable advantage of allowing most of the 
mirror sites to be bypassed in the crawl (Thelwall, 2001c; Thelwall, 2002a). 

The experiment to be conducted will be to use the CIA with each node in each 
data set as a single seed set, using k = 2, 4, 8, 16 and 32. The communities identified 
will be summarised by size and compared to the topological structure of this modified 
Web space in order to ascertain whether the results do indeed show real communities 
that are different from the connected components obtained from the overall 
topological structure. Investigations into whether different k values give similar 
results and how robust the communities are to the choice of seed will also be 
reported. 



   Page 7 of 16 

A database of the link structure of the UK academic Web as of July, 2002 was 
created by a specialist information science Web crawler (Thelwall, 2001ab) and has 
been placed in a publicly available database for free access by researchers 
(http://cybermetrics.wlv.ac.uk/database). It consists of the set of pages that was 
obtained by starting at the home page or an alternative starting point for each of 111 
university institutions (listed on the site) and then following links recursively. It is not 
in any sense a definitive crawl because it will exclude pages that are not linked to. 
The database was synthesized by removing all links to pages within the same 
university and all links to domains outside the set under consideration. Finally, all 
completely isolated pages that were neither the source nor target of any remaining 
links were then removed. The remainder formed the raw data for the experiment. The 
set was then processed to form three new ones for the directory, domain and 
university layer, making a total of four alternative representations of the interlinking 
structure of the UK academic Web. These were then converted into a numerical code 
form for efficient and compact main memory storage purposes. The conversion 
process included heuristics to merge URLs for the same pages, principally alternative 
home pages and domain names. 

The Graph Structure Analysis Environment program (Thelwall & Wilkinson, 
2003b) was used to find the basic topological structure of each layer. A new program 
was then written to apply the CIA to the data sets. It is identical in basic algorithm to 
the original version but was designed with a new data structure to keep all links in 
main memory permanently. This allowed it to use a much faster non-dynamic data 
structure to store the large graphs, which sped up the algorithm to the extent that it 
was feasible to run it repeatedly with a large range of initial seed sets. The data was 
processed in a lab of 20 PCs with each one processing a single document model and k 
value but all possible single seed starting sets. The longest time to complete for any 
program was seven days, for the domain model with k = 32. On each computer most 
seeds were typically processed very quickly but highly connected ones required a 
much longer time to handle. 

The data obtained will not be tested for goodness of fit with Lotka’s law 
(Nicholls, 1986) or other mathematical models, the primary interest here being the 
overall distribution of communities rather than any formal mathematical statement of 
properties. 

Results 
The topological component sizes in the different layers will be reported first in 

order to form a basis for comparison with the results of the CIA algorithm. 

Topological Structures 

University Layer Components 
There was only one undirected component, which contained the whole set of 

111 universities. There was one directed component containing 108 of the 
universities. The other three were in components of size one. No universities had been 
removed from the data set through being isolated. 

Domain Layer Components 
There were 6,754 separate domains. Of these, 6,750 formed one large 

component and there were two other components of size 2. There was one large 
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directed component of 2,297 domains, one component of two and the rest were all of 
size 1. Almost half of the domains had been removed for being isolated, 5,630 in all. 

Directory Layer Components 
There were many more separate undirected components at the directory level. 

Figure 3 illustrates the results using logarithmic scales to highlight the power law like 
distribution, although an anomaly is also present. There were 94,983 separate 
directories in the data set, 88,849 of which were in one huge component. There were 
many more separate directed components, with the largest being of size 2,388 and 
91,901 being components of size 1. Figure 4 illustrates the results. Most of the 
directories (615,842 or 87%) had been removed for being isolated. 
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Figs. 3-4. The size of directory-based undirected and directed components on the 

Web. 

Page Layer Components 
There were 202,338 separate pages in the data set, 165,710 of which were in 

one huge undirected component. Almost all pages were in directed components of 
size 1, 201,864 in total. The largest directed component was only of size 19. Most of 
the files (6,049,036 or 97%) had been removed for being isolated. 
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Figs. 5-6. The size of page-based undirected and directed components on the Web. 

 
General statistics about the size of the data set are summarised in Table 1 for 

comparison purposes with the communities found. 
 
Table 1. The size of each data set, after the elimination of isolated nodes. 

 Nodes in data set Largest undirected component size 
File 202,338 165,710 
Directory 94,983 88,849 
Domain 6,754 6,750 
University 111 111 
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Community Structures 

University Layer Communities 
The results for the university model were straightforward. When k = 2, 106 

starting universities lead to a community containing all 111, the rest leading to no 
communities. This indicates a high degree of interconnectivity. When k = 4 and 8, 
only one university did not seed a community of all 111. For larger values (k=16) all 
starting universities returned a community of 111. At the university level the pattern 
of interconnectivity is clearly sufficiently great to negate the possibility of interesting 
community formation. If the data set had been much larger and international then this 
may well have been different, although some sites do attempt to maintain a list of all 
university home pages and the inclusion of one of these would go a long way towards 
making all universities interconnected. 

Domain Layer Communities 
The results of the domain model are presented as graphs in Figs 7 to 11 

showing the frequency of unique communities of each size. Logarithmic scales are 
again used to emphasize the power law type of distributions found. This kind of 
distribution should not be totally unexpected since for low values of k communities 
may be dominated by node origin inlink and outlink degrees, known to follow a 
power law at least at the page level (Broder et al., 2000; Thelwall & Wilkinson, 
2003b) and for large values of k the communities may be dominated by the 
connectivity of the underlying graph, another power law candidate (Broder et al., 
2000; Thelwall & Wilkinson, 2003a). The interaction between the two is non-trivial, 
however, and so the power laws discovered are a genuinely new finding.  

There is a clear trend in the graphs for increasing k values. When k = 8 and 
above a community of size 6,740 appears. This is an enormous multi-disciplinary, 
multi-institution very general collection, with eight seeds (abdn.ac.uk, dur.ac.uk, 
ex.ac.uk, leeds.ac.uk, shef.ac.uk, ucl.ac.uk, scit.wlv.ac.uk, york.ac.uk – note that 
domains are identified with the variant starting with www. so that www.ex.ac.uk = 
ex.ac.uk). Presumably these sites all host pages that link extensively to the rest of the 
UK academic Web. The scit.wlv.ac.uk domain, for example hosts links to all 
university home pages (www.scit.wlv.ac.uk/ukinfo/). A high degree of inlinking or 
outlinking for a domain is required to set up a large community since its maximum 
size is k times the total number of distinct in and outlinks. 

The apparent thinning out of the graphs from k = 8 to the very sparse k = 32 is 
caused by increasingly many starting points leading to the big group. When k = 8 it is 
generated by eight starting domains and when k = 32 the number has risen to 580. 
Essentially, at the larger k values this huge community is swallowing up many of the 
smaller ones. The huge community is not interesting precisely because it is too big to 
be topic specific or anything other than very general. The remaining communities 
may be more topic-specific, particularly for the higher k values. 

With k = 2 and k = 4 only two pairs of starting domains produced the same 
community, showing that the communities produced are very delicate. When k=8 two 
additional communities with 8 and 3 seeds appear. When k=16 the large community 
has 57 seeds, and when k=32 it has 580 showing a degree of robustness. However, 
even for k=32 there are only three other communities with more than one seed, one 
with three and two with two. 
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Figs 7-11. The size of unique communities 
identified from the domain model follows a 
power law for k = 2 and 4 and a power law 
with an anomaly for k = 8 to 32. 

 
Table 2. Largest number of seeds for a single community with the domain model. 

k 2 4 8 16 32 
Seeds 2 2 8 57  580  

Directory Layer Communities 
The directory model showed a very similar trend to the domain model, except 

that many more communities were identified and although around 89% of unique 
communities had only one seed in each case, there were more robust multiple seed 
communities, even for k = 2. Figures 12 and 13 show the distribution of unique 
community sizes. Again a large community is evident, but this time there are many 
more communities and a range of larger ones. There are quite large communities even 
for k = 2. The largest community is of size 2,504 and emerges when k = 8. This is a 
collection of pages created by many academics using Nikos Drakos’ LaTeX2HTML 
program, each of which contains two links to the home pages of the software. The 
two directories from which these come are the two seeds of the community: 
cbl.leeds.ac.uk/nikos/tex2html/doc/latex2html and cbl.leeds.ac.uk/nikos.  

There were other large communities of electronic documents. For example, a 
community of size 202 was seeded by the directory ast.cam.ac.uk/ioa/preprint and all 
the other members of the community were papers starting with virtual directory 
addresses xxx.soton.ac.uk/find/astro-ph/1. One other member was 
xxx.soton.ac.uk/find/astro-ph/1/jacco+th.+van+loon/0/1/0/all/1. Another interesting 
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community for k=32 is that seeded by a directory containing a page listing all UK 
university home pages, www.scit.wlv.ac.uk/ukinfo. This community contains 98 
directories, none of which are university home pages! The other members are all 
directories that link to the UK university list. The reason that no university home page 
appears in the list is that these will all have many other pages that link to them, which 
act to separate them from the community. Like the Drakos directories, this 
community is created only by links to its seeds. 

The graphs are all very similar and so only two are shown. There are many 
more communities with multiple seeds and the figure increases as k increases. 
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Figs 12-13. The size of unique communities identified from the directory model 

follows a power law for k = 2 and 4 and a power law with anomalies for k = 2 to 32. 
 

There are an increasing number of the more robust, multiple seed communities 
than for the domain model and this number increases as k increases, as can be seen 
from tables 3 and 4. 
 

Table 3. Distribution of multiple seeds for the directory model communities, k = 2. 
Seeds  1 2 3 4
Frequency 15225 1905 1 9

 
Table 4. Distribution of multiple seeds for the directory model communities, k = 32. 

Seeds  1 2 3 4 5 6 7 8 9 10 11 12 13 14 19 25 30 
Frequency 15621 1950 396 141 36 25 12 4 1 1 2 2 3 1 1 1 1 

Page Layer Communities 
The page model shows a similar pattern to the previous two. When k = 2, the 

outlier is a community of size 13,113 created by a mirror copy of the FOLDOC 
archive at the university of Brighton, each page of which contains a credit link to the 
original home page at Imperial College, foldoc.doc.ic.ac.uk, which is the single seed 
for the community. The second biggest community is created by pages generated by 
LaTeX2HTML that link to the creator’s (old) home page at 
cbl.leeds.ac.uk/nikos/personal.html. 
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Figs 14-15. The size of unique communities identified from the page/file model 

follows a power law for k = 2 and 4 and a power law with anomalies for k = 2 to 32. 
 

There are further communities with more than one seed for the page model, in 
fact enough to be able to plot the number of seeds for each community. As can be 
seen from Figure 16, these also follow a power law. Since the page model graph will 
be much less connected than the others, this distribution may be starting to reflect 
connected components of the underlying Web graph. 
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Fig 16. The seeds for communities found by the page model follows a power law for k 

= 32. 

Discussion and Limitations 
Very interesting and surprising results were found in the overall topological 

structure of the Web layers, principally that the documents associated with inter-site 
links were very highly connected. At the domain level, almost all were in a single 
component. At the page level, whilst 97% of pages were neither the source nor target 
of any inter-site link, the vast majority of the rest formed one large connected 
component. These results show that a topological decomposition of the UK academic 
Web is not useful for community identification purposes because the components are 
too big to have any kind of topic-specific focus.  

Despite the high degree of connectedness in the Web graph, there are many 
topological communities in the UK academic Web at the page, directory and domain 
level. The university level was too broad to be useful, at least in the context of a 
single country. The communities are not necessarily coherent topics but can also be 
organised by a common information need and can be bound together by an ‘outsider’, 
as evidenced in both cases by the directory community seeded by the UK universities 
list. Many of the communities were not very robust, in terms of only being generated 
by one seed, as illustrated by the general change in distribution of sizes for different 
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values of k. It can also be seen that values of k which are too large can result in much 
of the community structure being lost through being swamped in one that is too big to 
be useful. 

There are four main limitations of this study. 
• Only one national academic Web has been used and although it seems likely that 

the results would extend to others, this has not been proven. 
• The results cover only an academic domain and from the Web IR perspective they 

would need to be extended to the rest of the Web in order to be useful. 
Specifically, it is possible that commercial Web sites are much less well 
interlinked and that as a result these would not tend to create significant 
communities. It seems more likely, however, that the approaches described here 
would work, although different k values may be needed and perhaps the page and 
directory models would be less successful because of their lower level of 
aggregation. 

• No evidence has been provided for the more complex task of ascertaining whether 
the ‘communities’ identified are in fact coherent in a useful sense, from either the 
Web IR or the Web metrics perspectives. 

• From the Web IR perspective it has not been demonstrated that the approach will 
scale to the whole Web. This is a particular concern for the page and directory 
models with their huge number of nodes. 

Conclusions 
From the motivation of using these results in a general Web IR algorithm, the 

fact that communities do emerge from the structure of the Web is promising. Probably 
for the general Web, there will be fewer inter-site links and so the community 
structure will be sparser. This evidence for additional structure is however a potential 
extra ingredient that could be added to existing search engine algorithms in order to 
improve results by identifying more accurately the topic of a page through the 
community structures it participates in at all layers of the Web. The different layers 
and different k values can potentially reveal different aspects of a single page, 
improving the chance of matching it correctly to different queries. Commercial search 
engine designers are therefore recommended to investigate whether this approach is 
capable of improving IR performance when incorporated with their existing 
algorithms. This may involve using several of the layers simultaneously and could 
even include multiple k values for each layer if these were found to give usefully 
complementary information. 

From the Web metric perspective the approach is recommended as a tool for 
those seeking to identify coherent collections of Web pages, for example all 
computing related pages in UK university Web sites (Li et al., 2003). The CIA can be 
expected to be an automated tool capable of using Web link structures to suggest new 
pages, directories or domains that may be related to those already known. 
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